The function acc_multivariate_outlier
uses the same
rules as acc_robust_univariate_outlier
for the identification of outliers. In the following example, we examine
systolic and diastolic blood pressure measurements in relation to age
and weight, and a table output is created:
# Load dataquieR
library(dataquieR)
# Load data
sd1 <- prep_get_data_frame("ship")
# Load metadata
file_name <- system.file("extdata", "ship_meta_v2.xlsx", package = "dataquieR")
prep_load_workbook_like_file(file_name)
meta_data_item <- prep_get_data_frame("item_level") # item_level is a sheet in ship_meta_v2.xlsx
# Apply indicator function
MVO_SBP0.1 <- acc_multivariate_outlier(
variable_group = c("SBP_0.1", "DBP_0.1", "AGE_0", "BODY_WEIGHT_0"),
study_data = sd1,
meta_data = meta_data_item,
id_vars = "ID",
label_col = "LABEL"
)
MVO_SBP0.1$SummaryTable
Variables | Tukey (N) | 3SD (N) | Hubert (N) | Sigma-gap (N) | NUM_acc_ud_outlm | PCT_acc_ud_outlm | GRADING |
---|---|---|---|---|---|---|---|
SBP_0.1 | DBP_0.1 | AGE_0 | BODY_WEIGHT_0 | 108 | 37 | 46 | 3 | 3 | 0.14 | 1 |
The number of outliers varies considerably depending on the criterion. Subsequently a parallel-coordinate-plot may be requested to further inspect results:
MVO_SBP0.1$SummaryPlot
Another example is the inspection of the first and second systolic blood pressure measurements:
MVO_DBP <- acc_multivariate_outlier(
variable_group = c("SBP_0.1", "SBP_0.2"),
study_data = sd1,
meta_data = meta_data_item,
label_col = "LABEL"
)
MVO_DBP$SummaryTable
Variables | Tukey (N) | 3SD (N) | Hubert (N) | Sigma-gap (N) | NUM_acc_ud_outlm | PCT_acc_ud_outlm | GRADING |
---|---|---|---|---|---|---|---|
SBP_0.1 | SBP_0.2 | 128 | 39 | 14 | 6 | 6 | 0.28 | 1 |
MVO_DBP$SummaryPlot